Commentaires à propos des exercices

- p. 82 #5 à 8, 10 à 14, 16 à 24 (loi simples)
- p. 46 #1, 2, a,b,c,e, 5; p. 53 # 1, 5 (théorie cinétique)
- **5.** Explication en mots acceptable. Tu peux aussi démontrer algébriquement. Si $V_2 = 3 V_1$, utilise $P_1V_1=P_2V_2$ et tu peux isoler $P_2 = 1/3 P_1$
- **6.** Application de $P_1V_1=P_2V_2$
- 7. Application de $P_1V_1=P_2V_2$
- 8. Après le calcul de P₁, on additionne la pression ambiante de 101,3 kPa

Calcul de la pression minimale dans la bouteille

Comme on ne peut pas vider complètement une bouteille de gaz, la pression finale dans la bouteille sera égale à la pression atmosphérique, soit 101,3 kPa.

$$P_{minimale} = 3039 \text{ kPa} + 101,3 \text{ kPa}$$

= 3140,3 kPa

Un gaz va pouvoir quitter un contenant seulement si la pression interne est supérieure à la pression externe. Si le gaz arrête de sortir, le contenant n'est pas vide.

- 10. Conversion de Celsius et Kelvin.
- 11. Tout mouvement est arrêté à 0K. Il est impossible de bouger moins que ça.
- 12. Application de loi simple (loi de Charles). Tu dois absolument utiliser des Kelvins. Si tu calcules avec des Celsius, le volume sera négatif.
- 13. Application loi simple. Il n'est pas nécessaire de convertir la réponse en Celsius si la question ne le précise pas.
- 14. Application de loi. N'oublie pas de convertir la température en Kelvin.
- 16. Même principe que #8. La jauge mesure la pression relative. Donc, la valeur de 240 kPa c'est la pression de plus que la pression atmosphérique ambiante.

Calcul de la pression initiale dans le pneu

```
P_1 = 240 \text{ kPa} + 101 \text{ kPa}
= 341 kPa
```

La pression de la jauge à la fin est aussi relative à la pression ambiante

Calcul de la pression finale de la jauge

Pression finale de la jauge = 355 kPa - 101 kPa = 254 kPa

Ces calculs relatifs à la pression ambiante sont nécessaires si on parle de gaz qui tente de sortir d'un contenant.

- 17. Hypothèse d'Avogadro. Même T, P et V donc nécessairement le même n pour le gaz inconnu et pour O_2
- 18. Hypothèse d'Avogadro
- 19 à 21. Application loi simple
- 22. Volume molaire à TPN (ne pas mémoriser pour le test)
- 23. Volume molaire à TAPN (ne pas mémoriser pour le test)
- 24. Explication qualificatif des loi simples

- p. 46 #1, 2, a,b,c,e, 5; p. 53 # 1, 5 (théorie cinétique)
- 1, 2, 5 : test de compréhension de la théorique cinétique et leur lien avec T, P, V et n
- p. 53
- 1. test compréhension théorie cinétique
- 5. Convertir atm en kPa et en mm Hg